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Abstract. Since Nédélec published his milestone papers in the 1980s, edge vector bases
have been widely used in electromagnetic simulations. They have been proved to be
more suitable than nodal bases for simulating electric and magnetic fields by satisfying
edge continuity. Many different types of Nédélec vector bases have been developed.
These bases can be classified into two main categories: interpolatory and hierachical
types. The hierarchical vector bases can use either uniform or nonuniform meshes,
while the interpolatory vector bases can use only uniform meshes. These bases have
been designed by different researchers in the past two decades, but their performances
have not been compared in detail before. Interpolatory vector basis are relatively
easy to implement, while hierarchical vector bases can use multigrid techniques for
speedup in solving linear systems. This paper studies these two vector bases through
detailed numerical comparisons. Our objective is to enable researchers to choose better
vector bases for various applications and to develop new vector bases in the future.
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1 Introduction

Electromagnetic (EM) phenomena arise in many fields of science and engineering, such
as radar, wireless communication, accelerators, and electric circuits. EM simulations usu-
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ally include time domain and frequency domain simulations. Eigenvalue problems are
usually solved in the frequency domain. Traditional numerical approaches are finite-
difference and finite-volume methods. Because of complicated geometry, however, the
finite-element method (FEM) has proved most advantageous [15, 31, 33] and has been
broadly used in EM simulations. Since high-order bases can dramatically increase the
accuracy, the high-order hp-finite element method (hp-FEM) is preferred in the simula-
tions. Such methods for solving Maxwell’s equation are successful except when solving
eigenvalue problems. The main reason is the observed appearance of spurious, nonphys-
ical solutions when a straightforward nodal basis with continuous Galerkin (CG) FEM is
used to discretize the Maxwell curl-curl equations. These problems may come from the
poor representation of the large null space of the operator, which has troubled people for
many years. Detailed discussion can be found in [32]. Although applying different weak
forms of Maxwell’s equation may overcome this difficulty with traditional nodal-type
finite-element methods, the use of special curl-conforming elements [26, 27] removes the
problem of spurious modes. FEMs based on edge elements, or Nédélec elements, have
rapidly become the dominant approach for solving geometrically complex problems in
the frequency domain.

The Nédélec vector bases belong to the curl-conforming space H(curl)={~v∈ L2(Ω),
and ∇×~v ∈ L2(Ω)}, whereas traditional vector bases belong to (L2(Ω))3. The lowest-
order Nédélec vector bases are often referred to as edge bases [3, 25, 36] or Whitney forms
[37]. The search for a convenient set of basis functions for higher-order approximation
has attracted a great deal of attention. Several variants of second-order basis functions
have been described in [6, 10, 16, 19], while third-order elements have been considered
in [4, 17, 20, 25]. The construction of elements of higher than third-order was considered
by Graglia et al. [11], and a nodal basis was described by Webb [36] where basis func-
tions of arbitrary order are presented based on the degrees of freedom outlined in [27].
As scalar elements, there are two types of high-order vector bases. The first type uses
interpolatory basis function [1, 6, 11, 12, 16, 19, 29, 32, 34, 38], and the second type uses hi-
erarchical basis functions [2, 35, 36, 39]. Both types span the same vector space and start
from the zeroth-order basis functions. Their major difference is in their construction. The
interpolatory basis functions are defined on a set of points on the element, such that each
basis function vanishes at all the points except for one point. These basis functions have
several advantages. Their coefficients have a physical interpretation as components of
the vector field at the interpolatory points. Since they interpolate the tangential compo-
nents of the vector field at the interpolatory points, their use makes it easy to enhance
boundary conditions. Moreover, they have a unified expression, which significantly sim-
plifies the implementation of solvers for generation of arbitrary-order basis functions.
However, interpolatory basis functions of a given order are all different from those of the
lower orders. Hence, different-order basis functions cannot be used together, these mak-
ing it impossible to implement P-adaption. In contrast, the hierarchical basis functions
are not defined on a set of points. Higher-order hierarchical basis functions are formed
by adding new functions to the lower-order basis functions. Thus, the first-order basis
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functions contain those of the zeroth order, the second-order function contains those of
the zeroth and the first orders, and so on. The distinct advantage of these basis functions
is that they permit the use of different orders in a problem and hence can be employed
for P-adaption.

In this paper, we study the performance of these two types of vector bases for eigen-
value problems. The paper is organized in the following way: Maxwell’s equations are
given in Section 2, and the numerical methods for bases are introduced in Section 3; de-
tails are included in Appendixes A and B. The numerical and parallel methods for eigen-
value problems are discussed in Section 4, and verification and benchmarks are presented
in Section 5. Applications in simple geometries and radio frequency (RF) resonators are
given in Section 6. Our conclusions are summarized in Section 7.

2 Maxwell’s Equations

Consider Maxwell’s equations in a three-dimensional domain Ω with in a vacuum

∂~D
∂t

=∇× ~H−~J , ∇·~D=ρ, (2.1)

∂~B
∂t

=−∇×~E , ∇·~B=0, (2.2)

where ρ(~x,t) is the charge distribution and the current~J(~x,t) is related to the electric field
~E(~x,t) through Ohms law, ~J = σ~E, where σ is the finite conductivity. The electric field
~E(~x,t) and the electric displacement ~D(~x,t), the magnetic field ~B(~x,t), and the magnetiz-
ing field ~H(~x,t) have following constitutive relations.

~D=ε~E=ε0εr~E, ~B=µ~H=µ0µr~H (2.3)

Here εr and µr are the relative permittivity and permeability of the material, respectively.
For our simulations of vacuum, they both equal one; that is, the permittivity and perme-
ability ε0 and µ0 satisfy c2=1/(ε0µ0).

We first transform the fields into Fourier space.

~̄E(~x,t)=
∫ ∞

−∞
~E(~x,t)eωtdω, ~̄H(~x,t)=

∫ ∞

−∞
~H(~x,t)eωtdω (2.4)

Then Maxwell’s equations can be written in frequency domain as follows.

ωε~̄E=∇× ~̄H , ∇·ε~̄E=0, (2.5)

ωµ ~̄H=−∇×~̄E , ∇·µ ~̄H=0, (2.6)
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Figure 1: Interpolatory points (P=3) in a triangle (left) associated with edge-connecting nodes 1 and 2 and a
tetrahedron (right) associated with edge-connecting nodes 2 and 3

Taking the cross-product operation over Equations (2.5)-(2.6), we obtain a second-
order curl-curl form.

∇×∇× ~̄H=
ω2

ε̄µ̄
~̄H=

ω2

c2
~̄H=λ ~̄H , ∇· ~̄H=0 (2.7)

∇×∇×~̄E=
ω2

ε̄µ̄
~̄E=

ω2

c2
~̄E=λ~̄E , ∇·~̄E=0 (2.8)

For a perfectly electrically conducting (PEC) wall, the boundary conditions for the
fields are as follows.

~n×~̄E=0, ~n· ~̄H=0 (2.9)

3 Nédélec Vector Bases

In this section, we present two types of Nédélec vector bases. Nédélec vector bases in
2D on a triangle element are briefly explained first, followed by the vector bases on a
3D tetrahedron element. Different from the nodal FEM, the degrees of freedom for the
Nédélec vector bases are associated with the edges and face in 2D, and with the edges,
faces, and volume in 3D.

3.1 Interpolatory Nédélec Vector Bases

Our interpolatory vector bases are based on the work of Graglia et al. [11,12] and Jianmin
et al. [15].IWe use Lagrange functions on uniform grid points. The lowest-order basis,
which is the zeroth-order vector basis, is associated with edges. The high-order vector
bases are constructed by multiplying a complete interpolatory polynomial of order P
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Figure 2: First-order (P=1) interpolatory type Nédélec vector bases on a triangle element

with the zeroth-order bases. The left figure in Fig. 1 shows the interpolatory points for
P=3 on a triangle associated with edge-connecting nodes 1 and 2, and the right figure is
the interpolatory points for P=3 on a tetrahedron associated with edge-connecting nodes
2 and 3. Figure 2 shows the first-order interpolatory Nédélec vector bases on a triangle
element. Details of the construction method can be found in Appendix A.

3.2 Hierachical Nédélec Vector Basis

Our hierarchical vector bases are based on the work of Webb et al. [35, 36], Andersen and
Volakis [2], and Zhu and Cangellaris [39]. The grid points on triangle and teterahedron
can be either uniform or nonuniform. The lowest order is same as the interpolatory vec-
tor bases, which is the zeroth-order vector bases associated with edges. The (P+1)th-order
vector bases contain all Pth-order vector bases. Figure 3 shows the first-order hierarchical
type Nédélec vector bases on a triangle. Their shapes are different from those of the inter-
polatory vector bases shown in Fig. 2. This difference affects the numerical computations
studied in this paper. Details of the construction method can be found in Appendix B.

4 Numerical and Parallel Methods

In this section, we explain the numerical and parallel methods for the electromagnetic
solvers based on the vector bases introduced above. Since these vector bases are more
complicated than scalar bases, many challenges have to be solved, especially when the
high-order bases are used.
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Figure 3: First-order (P=1) hierarchical type Nédélec vector bases on a triangle

Figure 4: Transformation between reference and arbitrary tetrahedron element

4.1 Transformations

The vector bases introduced before are defined on a reference element. For real applica-
tions. they must be transformed to an arbitrary element in the computation domain. The
transformations should follow rules that can sustain the property of the vector bases.

As shown in Fig. 4, for any tetrahedron element K∈τh, there is a map FK : K̂→K such
that FK(K̂)=K and

FK~̂x=BK~̂x+~bK, (4.1)

where τh = {K} is a discretization of the computation domain and BK and bK are de-
termined by the coordinates of four vertices of the tetrahedron element K. Suppose FK
transforms p̂(~̂x)∈H1(K̂) to p(~x)∈H1(K) by p◦FK = p̂. Then ∇p(~x)= (dFK)

−T∇̂ p̂(~̂x)=
(BT

K)
−1∇̂ p̂(~̂x). Then, for ~̂u(~̂x)∈Hp(curl,K̂), there is ~u(~x)∈Hp(curl,K) such that ~u(~x)◦FK=

(BT
K)
−1~̂u(~̂x), which means
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~u(~x)=(BT
K)
−1~̂u(~̂x). (4.2)

4.2 Vector Bases Connectivity

The principal challenge in using vector bases is to satisfy the conforming properties on
the element interfaces. We explain the methods for a 3D tetrahedron element. All meth-
ods are the same for a 2D triangle element.

4.2.1 Interpolatory Vector Bases

For interpolatory vector bases, the property of a constant component along the direction
of the corresponding edge associated with the node has been used for setting up the
modes matching on the interface. Only the bases associated with edges and faces need
to be considered for node matching on the tetrahedron element. Because the order of the
vertices on edges and faces may be different for two neighboring tetrahedron elements,
the coefficients and directions of the vector bases on the two neighboring elements may
be different even though they are related to the same nodes on the edges and faces.

Edge modes matching is easy because only two possibilities exist and are easy to be
decided according to the order of the vertices. The global id of the vertices has been used
to decide the direction of the edges on each tetrahedron element.

Face modes matching needs more effort and the order of the vertices on each triangle
needs to be decided. Since there are two orders of the vertexes, clockwise and counter
clockwise, the edge directions are opposite in these two cases. These need to be deter-
mined for each shared face on two adjacent tetrahedron elements. Variables have been
set for edges and faces on each element in a preprocessing step in order to identify the
types for these edges and faces shared by different tetrahedron elements. From the defi-
nition of the interpolatory vector bases, the construction of face vector bases can choose
any two edges to multiply with a complete set of P-th order polynomial functions. For
convenience, in our solvers we first decide which one in each two tetrahedron elements is
the primary, and the other one is the secondary. Then the face vector bases on the primary
element are chosen with the first two edges on the triangle. A function needs to be devel-
oped next in order to decide which two edges on the secondary element have been used
to match the corresponding edges on the opposite primary tetrahedron element. Both
the edge number and their directions need to be identified. Faces on the boundary are
set to be the primary faces, and the first two edges are used to construct the vector bases.
When all these information have been obtained, face modes can be exactly matched on
shared faces for each two neighboring tetrahedron elements.

4.2.2 Hierarchical Vector Bases

For hierarchical vector bases, the mode matching is different from the case of interpola-
tory vector bases. The edge mode matching is similar as only two possibilities exist and
they are easy to be decided according to the global ids of the vertices.
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For face vector mode, since the bases are associated with vertexes, the correct or-
ders of the vertexes should be decided. Since face mode matching is connected to the
edge mode matching, the edge mode matching must be determined first. The face mode
matching could be performed on the real tetrahedron element, or the vector field could
be transformed to the standard tetrahedron element.

To transform the vector field with the hierarchical vector bases, we need to construct
mass matrices for edges, faces, and volume. Their definition is given in the following.

For the edge mass matrix MEk

MEk
ij =

∫
edge

(~φk
i ·~e)(

~φk
j ·~e)dl, (4.3)

where~e is the unit vector along the edge k, and ~φk
i is the I th vector base.

For the face mass matrix MFk

MFk
ij =

∫
f ace

Project(~φk
i )Project(~φk

j )ds, (4.4)

where Project(~φi) is the projection of I th vector base on the face k.
For the volume mass matrix MVk

MVk
ij =

∫
volume

~φk
i ·
~φk

j dv, (4.5)

where ~φk
i is the I th vector base on the tetrahedron element.

Besides these matrices, we need to compute correlated matrices for edge-face, edge-
volume, and face-volume. They are defined in the following.

For the edge-face mass matrix MEFkl

MEFkl
ij =

∫
f ace

Project(~φk
i )·Project(~φl

j)dv, (4.6)

where Project(~φk
i ) is projection of the I th vector base associated with edge k, and Project(~φl

j)
is the projection of J th vector base associated with face l.

For the edge-volume mass matrix MEVk

MEVk
ij =

∫
volume

~φk
i ·
~φk

j dv, (4.7)

where ~φk
i is the I th vector base associated with edge k, and ~φk

j is the J th vector base
associated with volume.

For the face-volume mass matrix MFVk

MFVk
ij =

∫
volume

~φk
i ·
~φk

j dv, (4.8)
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where ~φk
i is the I th vector base associated with face k, and ~φk

j is the J th vector base
associated with volume.

4.3 Eigenvalue Computation

From (2.7)-(2.8), we arrive at a general eigenvalue problem. We seek the eigenvalue λi
and corresponding eigenvector ~Ei∈Hp(curl,Ω), such that

A·~̂Ei = λi M·~̂Ei (4.9)

A = (∇×~̂Ei,∇×~̂Ei) (4.10)

B = (~̂Ei,~̂Ei). (4.11)

Many different algorithms could be used for solving the general eigenvalue problem.
If the problem size is not too large, direct methods such as LAPACK routines can be ap-
plied to extract the eigenvalues efficiently. In real applications, however, most problems
have large sizes that make iterative methods more suitable. Among them, Krylov sub-
space projection methods are most popular. The basic idea of Krylov subspace projection
methods is approximating the vector ~v by a vector ṽ that belongs to the expansion sub-
space K, by imposing the constraint that the residual vector Aṽ−λ̃ṽ is orthogonal to the
projection subspace L. Through this expansion, the original eigenvalue problem is pro-
jected onto an eigenvalue problem of smaller dimension. Then it is straightforward to
compute the eigenvalues of this smaller system. Upon convergence, the eigenvalues of
the original system can be easily computed. The most popular algorithms in this category
are Arnoldi and Lanczos algorithms, which deal with general and symmetric matrixes,
respectively. The publicly available software PARPACK [21,24] has been used to solve the
eigenvalue problem on parallel supercomputers. Several approaches exist in PARPACK
software to solve this general eigenvalue problem. The shift-and-invert mode has been
used, which solves the following eigenvalue problem instead of the original one.

(A−σM)−1M·~̄E=µ~̄E, µ=
1

λ−σ
(4.12)

4.4 Mesh and I/O

We generate mesh using CUBIT software. With CUBIT software, several million tetrahe-
dron elements can be generated on a desktop computer. Since vector bases have different
format from that of the scalar bases, we have developed specific I/O routines to output
data in the computation. Both eigenvalues and eigenvectors are stored for postprocess-
ing. TECPLOT software has been used for visualizing the results.
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4.5 Parallel Method

Because the eigenvalue computation may need a large mesh, parallel computation is nec-
essary. For parallel processing, we have developed both global and local maps for the
degrees of freedom. Interface maps have also been developed to match the mesh points
on the interfaces. MPI functions have been used for communication between processors.
We have developed several routines for the mesh partitioning. The simplest one evenly
distributes the elements by its global id to all processors. A more meaningful approach is
dividing the domain evenly according to the location in the domain. The publicly avail-
able software packages METIS and PARMETIS have also been used for mesh partition.

5 Verifications and Benchmarks

Since the constructions of the interpolatory and hierarchical vector bases rely on scalar
bases, we investigate these scalar bases first. Since the cases in 2D are similar to those in
3D, we focus on 3D. We first study three types of scalar bases: Silvester nodal base [31],
barycentric modal base, and nodal base built from orthogonal bases on a tetrahedron
element [14]. Then we compare the vector bases for the 3D domain with a tetrahedron
element. We also test these two types of vector bases in 3D for eigenvalue problems.

5.1 Scalar Bases Comparisons

Suppose the standard reference tetrahedron element has the definition of [−1,1]3 and the
global domain also is [−1,1]3.

5.1.1 Interpolation

The interpolation errors for the scalar bases are shown on the left of Fig. 5. The error
is defined as L∞. The test function is f (x,y,z) = exp(x+y+z), and the number of to-
tal tetrahedron elements is 204. The computation domain is [−1,1]3. Since the Silvester
nodal base is defined on a uniform mesh, the error is computed on uniform mesh. For
a barycentric nodal base and a nodal base built from an orthogonal base, a nonuniform
mesh has been used. Therefore, three lines have been shown on the left of Fig. 5. The
nonuniform mesh uses Fekete points on the tetrahedron element. One can see that the
accuracies of these three scalar bases are close: the barycentric nodal base gives results
similar to those of the nodal base built from orthogonal bases, and they give more ac-
curate results than does the Silvester nodal base. A small leveling off at the end for the
barycentric modal base is due to an integration error for the high-order nodal base.

5.1.2 Derivative

The derivative errors for these scalar bases are shown on the right of Fig. 5. The results
are similar to those for the interpolation errors. Since the accuracy of interpolation is
better than that of the corresponding derivative errors, however, the small leveling off



11

Figure 5: Comparison of interpolation (left) and derivative (right)

Table 1: Relative integration errors using different bases

P Nodal Base, Uniform Nodal, Nonuniform Modal, Uniform Modal, Nonuniform
0 2.742e-2 2.742e-2 3.606e-2 3.606e-2
1 1.011e-2 1.022e-2 1.033e-2 1.033e-2
2 4.957e-4 4.430e-4 6.354e-4 4.522e-4
3 1.272e-4 8.000e-5 1.871e-4 1.091e-4
4 6.444e-6 3.432e-6 1.084e-5 4.789e-6
5 1.317e-6 4.666e-7 3.183e-6 1.064e-6
6 6.123e-8 1.978e-8 1.736e-7 5.482e-8

for the barycentric nodal base at P=6 for the derivative error is better than for the case
of interpolation error. Similar to the interpolation error comparison, the differences of
derivative between those three bases are small.

5.1.3 Integration

Next, we compare the integration error with two scalar bases. One is the nodal base
built from orthogonal bases, and the other is the barycentric nodal base. The integra-
tion function is f (x,y,z)= exp(x+y+z), and the number of total tetrahedron elements is
204. The computation domain is [−π,π]3, and the accurate value for this integration
is 12322.354615553. Two types of meshes have been used: uniform and nonuniform
meshes. The nonuniform mesh uses the Fekete points on a tetrahedron element. As
shown in Table. 1, the relative integration errors using nodal bases are better than using
the modal base, and using nonuniform mesh gives better results than using the uniform
mesh.
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5.2 Vector Bases Comparison

Next, we investigate the vector bases. Similar to the scalar bases, interpolation, and
derivative errors are discussed separately.

5.2.1 Interpolation

The interpolation errors with the vector bases are shown in Fig. 6. The total error is de-

fined as L∞(~V)=
√

L2
∞(Vx)+L2

∞(Vy)+L2
∞(Vz). The vector function is ~VT=(exp(y),exp(z),exp(x)).

For hierarchical vector bases, two meshes have been tested: uniform and nonuniform
meshes. Therefore, three lines are shown in each plot of Fig. 6. One can see that the
accuracies of these two vector bases are close to each other. The hierarchical vector base
gives more accurate results than do the interpolatory vector bases. The error decreases
more regularly for the interpolatory vector bases. The difference between uniform and
nonuniform meshes is not prominent. The results are consistent with those of the scalar
bases, where the Silvester nodal base gives a slightly worse result.

5.2.2 Derivative and Curl

The derivative and curl errors are shown in Fig. 7. The test function is ~f T=( fx, fy, fz), fx=
exp(y), fy = exp(z), fz = exp(x), and the number of total tetrahedron elements is 204. The
computation domain is [−1,1]3. Contrary to the interpolation, in both derivative and
curl operations, the interpolatory vector base gives better results than does the hierar-
chical vector base. The reason could be the method of constructing vector bases, since
a particular combination of different orders of barycentric coordinates was chosen. De-
tailed construction methods can be found in Appendix B. This characteristic is difficult to
analyze in theory but easy to show through numerical comparison. Another character-
istic is that the error curves using hierarchical vector bases are not smooth, whereas the
curves using interpolatory vector bases is smooth.

5.3 Condition Number

Next, we investigate the condition number for these scalar and vector bases since it is
directly related to the performance of the linear solver. Similar to above, only 3D bases
are studied on a tetrahedron element.

5.3.1 Reference Element

We compare the condition numbers for the mass matrix on a tetrahedron element
using nodal and modal scalar bases. In Table 2, the second and third columns show
the condition numbers for using the nodal bases built from the orthogonal bases with
uniform and nonuniform meshes, and the last column shows the condition numbers for
using the barycentric modal base. Since the integration of bases product has analytical
values, we just list the theoretical values for comparison. Clearly the condition numbers
are much better when using the nodal base for both uniform and nonuniform meshes.
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Figure 6: Comparison of interpolation (scalar: upper left, vector x component: upper right, vector y component:
lower left, vector z component: lower right) on box domain
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Figure 7: Comparison of derivative and curl operations on a box domain
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Table 2: Mass matrix condition numbers using different bases for scalar bases

P Nodal base, Uniform Nodal, Nonuniform Modal, theory
0 35.9752 35.9752 134.2906
1 105.0284 110.3535 2.0079e3
2 236.9213 250.7013 4.4464e4
3 409.8688 352.5142 1.1348e5
4 1.0888e3 814.0306 1.1769e7
5 2.7354e3 1.7491e3 2.5617e10
6 8.4537e3 4.4996e3 3.1260e13

Table 3: Mass matrix condition numbers using different bases for vector bases

P Hierarchical, Uniform Hierarchical, Nonuniform Interpolatory, Uniform
0 10.0 10.0 10.0
1 696.3301 696.3300 79.8616
2 5.4905e5 3.5091e5 710.5062
3 3.0902e7 4.0057e7 2.1147e3
4 2.1910e9 4.5849e9 1.3570e4
5 8.9307e10 7.7603e13 5.3653e4
6 5.1629e13 1.7875e14 4.3495e5

Moreover, using a nonuniform mesh gives slightly better condition numbers. These re-
sults will influence the vector bases, since they are closely related to these two scalar
bases.

Next, we compare the condition numbers for the mass matrix on a tetrahedron el-
ement using hierarchical and interpolatory vector bases. In Table. 3, the second and
third columns show the condition numbers for using the hierarchical vector base with
uniform and nonuniform meshes, and the last column shows the condition numbers for
using the interpolatory vector base on a uniform mesh. As the interpolatory vector base
is defined only on a uniform mesh, we just list one column for comparison. Clearly the
condition numbers are much better when using the interpolatory vector base. Moreover,
using a nonuniform mesh gives actually worse condition numbers than does the uniform
mesh for the hierarchical vector base. These results are consistent with the scalar bases
comparisons above. The results mean that the interpolatory vector bases have good in-
dependence and that the nonuniform mesh makes the independence of the hierarchical
vector bases worse.

When we use the hierarchical vector base, we divide it into different categories con-
nected to edge (4.3), face (4.4), and volume (4.5). In Table 4, their condition numbers are
listed for comparison. The condition numbers for the edge mass matrix are relatively
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Table 4: Mass matrix condition numbers using hierarchical vector bases

P Edge, U Edge, NU Face, U Face, NU Volume, U Volume, NU
0 1.0 1.0
1 3.0 3.0 2.5652 2.6396
2 25.6619 25.6619 2.8758e3 2.9106e3 3.6999 3.8622
3 237.6413 369.3742 6.1555e5 7.0088e5 1.6995e5 1.6247e5
4 3.2668e3 6.7008e3 8.5879e7 1.3755e8 6.6181e7 8.1105e7
5 9.1586e4 1.3863e5 3.6229e9 2.5345e10 4.6333e10 3.8163e10
6 2.2459e6 3.1862e6 2.1605e12 3.0497e12 9.6054e12 1.3160e13

Table 5: Condition numbers on box domain
P 0 1 2
A 1.0937e9 5.388e18/1.2185e10 1.1728e32/4.2682e11
B 7.8464 208.5681/71.8019 1.9168e7/1453.8874

A-4.0*B 184.6566 1630.0/1582.3 2.5135e5/7.6079e3
A-4.5*B 441.2363 2736.3 /3394.7 2.1197e5/1.7858e4
A-4.8*B 4957.8 16023.0/11023.0 6.3716e5/6.0083e4
B−1*A 2.3811e9 2.8811e18/4.6730e10 3.3999e35/2.0014e12

small compared with those of the face and volume mass matrices. This means that the
independence of the edge vector bases is relatively good, while the independence of the
face and volume vector bases is not. The condition numbers of both face and volume
mass matrices increase rapidly, and these are also consistent with the total mass matrix
results above.

5.3.2 Global Domain

We now study the vector bases for the global domain [−1,1]3. There are a total of 204
tetrahedron elements. Table 5 compares the condition numbers for the global mass and
stiffness matrices. Some combinations of them have also been studied. For P=0, hierar-
chical and interpolatory vector bases are the same, so only one column of results is listed.
For P=1 and 2, two columns of results are listed: the left one is for the hierarchical vector
base, and the right one for the interpolatory vector base. The table clearly shows that us-
ing an interpolatory vector base gives better condition numbers for most cases, especially
when P is large.

In Figure 8, the condition numbers are shown with polynomial order P. Clearly the
condition numbers of the hierarchical vector base increase much rapidly than for the
interpolatory vector base. The condition number of B−1∗A is closer to the condition
number of A than B. In Fig. 9, changes of the condition numbers with different λ have
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Figure 8: Condition numbers with polynomial order: hierarchical (left) and interpolatory (right) vector bases

Figure 9: Condition numbers with shifted λ: hierarchical (left) and interpolatory (right) vector bases
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Table 6: Comparison on degree of freedom (DOFs) (E=204)

Polynomial Order CG DG Vector Base
3 537 4902 165
4 2094 10184 1038
5 6618 18310 3231

been plotted, and there are some values of λ that can achieve the smallest condition
number for matrix A−λ∗B. These values can be used in the eigenvalue computations to
reach the fastest speed.

6 Applications

Now we investigate the performance of these two vector bases for some eigenvalue com-
putations. First, we compare the degree of freedom (DOF) for scalar and vector bases on
the same mesh in Table 6. For the scalar base, we consider continuous Galerkin (CG) and
discontinuous Galerkin (DG) methods. As can be seen, the DOF of the DG method has
the largest numbers, and vector bases are the least. The CG method has fewer DOFs than
does the DG method. The difference between these different bases and methods becomes
smaller as the polynomial order increases.

6.1 Simple Geometries

First, we test the two vector bases in a simple geometry, namely, a cubic box with size
[−1,1]3. Tables 7 and 8 give the smallest five eigenvalues computed by using the hierar-
chical and interpolatory vector bases, respectively, normalized with π2/4. The theoret-
ical values are given in the second column. Two different meshes have been used: one
with 204 tetrahedra and the other with 55,713 tetrahedra. For the first mesh with 204
tetrahedra, three different polynomial orders were used. Results show that the accuracy
increases when using the high-order bases. These results also show that both hierarchical
and interpolatory vector bases produce the correct results. No spurious modes exist, as
happens with scalar bases been reported in the literature.

6.2 Accuracy

To investigate the accuracy, we used a series of meshes shown in Fig. 10, varying by 8
times from 96 to 768 and from 768 to 6144, so the mesh size is halved for each pair of them.
In Table 9, the average of the first three eigenvalue errors is listed for both vector bases.
The left one is from interpolatory vector base, and the right one is from the hierarchical
vector base.
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Table 7: Eigenvalues on box domain using hierarchical vector bases

Mode Theory E=204,P=0 E=204, P=1 E=204, P=2 E=55k, P=0
1 2.0 1.9567 1.9798 1.9981 2.0001
2 2.0 1.9895 1.9839 1.9993 1.9997
3 2.0 2.004 1.9847 1.9993 1.9997
4 3.0 2.8904 2.9363 2.9902 2.9971
5 3.0 2.9894 2.9505 3.0190 2.9975

Table 8: Eigenvalues on box domain using nodal vector bases

Mode Theory E=204,P=0 E=204, P=1 E=204, P=2 E=55k, P=0
1 2.0 1.9567 2.0013 2.0001 2.0001
2 2.0 1.9895 1.9993 2.0001 1.9997
3 2.0 2.004 1.9989 2.0001 1.9997
4 3.0 2.8904 3.0080 3.0003 2.9971
5 3.0 2.9894 3.0064 3.0003 2.9975

Figure 10: Box mesh with 96, 768, and 6144 tetrahedra

Table 9: Eigenvalue errors with different mesh and polynomial orders

Element Number vs. P 0 1 2
96 2.1213E-1/2.1213E-1 8.2995E-3/3.2980E-2 3.5794E-4/4.1532E-3
768 3.5663E-2/3.5663E-2 6.2839E-4/1.8450E-3 6.2446E-6/6.7253E-5

6144 7.9908E-3/7.9908E-3 4.1159E-5/1.1178E-4 9.8685E-8/9.3207E-6
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Figure 11: Comparisons on the average errors of first three eigenvalues

To compare the accuracy more clearly, we plot the results in Fig. 11. The left fig-
ure shows the average of the first three eigenvalue errors with different mesh sizes. The
mesh size of 96 tetrahedra elements has been set to 1, and mesh sizes of 768 and 6,144
tetrahedra elements are then 0.5 and 0.25. Solid lines are the results of using interpola-
tory vector bases, and the dashed lines are from hierarchical vector bases. Since for P=0,
the interpolatory and hierarchical vector bases are the same, only one has been plotted.
From the left figure, the errors of using interpolatory vector base are smaller than using
the hierarchical vector base. The difference of the errors for P=2 is larger than that for
P=1. The right part of Fig. 11 shows the average of the first three eigenvalue errors with
different polynomial orders. Similarly solid lines are results of using interpolatory vec-
tor bases, and the dashed lines are from hierarchical vector bases. For all three meshes,
the errors decrease faster when using the interpolatory vector base. These comparisons
clearly show that the interpolatory vector base can achieve more accurate results.

6.3 Speed

Although two vector bases give nearly the same correct results, the speed of the eigen-
value solvers is different. As shown in Table 10, when the polynomial order increases,
the speed becomes slower for both bases. However, using the interpolatory vector bases
is much faster than using the hierarchical vector bases. This result is consistent with the
condition number effect above, since a large condition number slows the convergence
rate when solving A·x=b in the eigenvalue solver.
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Table 10: Speed comparison for eigenvalue solvers using 64 CPUs (seconds)

Bases E=204,P=0 E=204, P=1 E=204, P=2 E=55k, P=0
Hierarchical 5.077123e-01 1.979933e+01 1.048209e+03 3.363760e+02
Interpolatory 5.191548e-01 1.579513e+01 1.520600e+02 3.321949e+02

Table 11: Scalablity comparison for eigenvalue solvers E=204, P=1 (seconds)

CPU 2 4 8
Hierarchical 9.056643e+01 6.727574e+01 3.677857e+01

Parallel Efficiency 1.0 0.673 0.615
Interpolatory 7.770730e+01 4.831998e+01 2.682341e+01

Parallel Efficiency 1.0 0.804 0.725

6.4 Scalability

Table 11 shows the scalability of two solvers for E=204, and P=1. When a small number
of processors is used, the parallel efficiency is fine. For this situation, the interpolatory
vector base gives better parallel efficiency. When a large number of processors is used,
however, the parallel efficiency becomes worse, because of the iterative method used in
the solvers. We plan to develop more scalable eigenvalue solvers in the future.

6.5 Complex Geometry

We applied also our eigenvalue solvers to simulate the Quater Wave Resonator (QWR)
used in accelerator research. The mesh is shown in Fig. 12, with 8,502 tetrahedra in the
simulation.

Table 12 shows the eigenvalues and their computation times for different solvers with
different polynomial orders. The results are consistent. For example, the computation
time for P=1 is nearly three times larger than that of P=0, consistent with the condition
number studies above.

Figures 13 and 14 show the first resonating field in the (x, y), (x, z), and (y, z) planes.
These results are from the solver using a hierarchical vector base with polynomial order 2.

Table 12: Comparison for complex geometry computation

P 0 1
Eigenvalue 2.7683/2.7683 2.7922/ 2.8369

Frequency (MHz) 79.44/79.44 79.78/ 80.42
Time (s) 311.68/288.60 944.66/951.61
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Figure 12: QWR mesh E=8502
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Figure 13: QWR resonating electric field in (x, y) (left) and (x, z) (right) planes

Since a perfect electric conduct boundary condition is applied on all boundaries, the elec-
tric field vectors are all perpendicular to the boundary. The most intensive field locations
are on the axis and corner with small rounding radius. The field has three symmetries.
The unsymmetric effects are due to the uneven element distribution.

7 Summary

This paper presented our efforts in studying the performance of eigenvalue solvers using
two vector bases: hierarchical and interpolatory. The theories of these two bases have
been explained briefly, and the construction methods have been discussed in detail. Do-
main decomposition has been used for parallelizing the solvers. Benchmarks of these
parallel solvers have shown that the scaling is restricted by the difficulty of solving large
sparse matrices with a large number of processors. Detailed comparisons have been per-
formed based on numerical experiments. The accuracy, condition numbers, and uniform
and nonuniform meshes have all been investigated. These results show that hierarchi-
cal scalar and vector bases usually have larger condition numbers for the mass matrix
generated from them, leading to more iteration steps and slow speeds in the eigenvalue
solvers. A nonuniform mesh sometimes can improve the accuracy of interpolation and
derivative operators, but it may increase the condition number in some cases. Further-
more, two solvers have been compared for an eigenvalue computation on both simple
and complex geometries, and the accuracy has been investigated based on mesh size and
polynomial order. Although the accuracies become much better, the speeds of the eigen-
value solvers slow when high-order bases are used. In order to use high-order bases, new
methods and techniques are needed.
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Figure 14: QWR resonating electric field in (y, z) plane
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Appendix A: Interpolatory Nédélec Vector Bases

Vector Basis on 2D Triangle Element

The zeroth-order vector bases function associated with the edge connecting nodes i1 and
i2 is given by

~Wi1i2 = ξi1∇ξi2−ξi2∇ξi1 , (7.1)

where ξi are barycentric coordinates related to nodes i, i=1,2,3. ~Wi1i2 has only a tangential
component along the edge connecting nodes i1 and i2.

In order to construct high-order vector bases, the interpolatory points should be cho-
sen away from the triangle vertices. As shown on the left of Fig. 1, the interpolatory
points are located only on the edges and face of the triangle element. The complete inter-
polatory polynomials are also associated with different edges as follows.



25

Ni1i2
ijk = αi1i2

ijk
p+2

β
ξi3 P̂p+2

i (ξ1)P̂p+2
j (ξ2)P̂p+2

k (ξ3) (7.2)

P̂p+2
j (ξi) = Pp+2

j−1 (ξi−
1

p+2
)=

1
(j−1)!

j−1

∏
l=1

[(p+2)ξi−l], (7.3)

where i3 is an integer from (1,2,3) other than i1 and i2, and β is taken to be i,j, or k for
i3=1,2, or 3, respectively. For normalization, αi1i2

ijk has been chosen to make the component

of Ni1i2
ijk along edge-connecting nodes i1 and i2 to be 1. One then finds that

αi1i2
ijk =

p+2
p+2−β

`
ijk
i1i2

, (7.4)

where `
ijk
i1i2

is the length of the edge connecting nodes i1 and i2.
The total degree of freedom on triangle is (P+1)(P+3), where P is the order of the bases.

Vector Basis on 3D Tetrahedron Element

Similar to 2D case, the zeroth-order vector bases function associated with the edge con-
necting nodes i1 and i2 is given by

~Wi1i2 = ξi1∇ξi2−ξi2∇ξi1 (7.5)

where ξi are barycentric coordinates related to nodes i, i=1,2,3,4. ~Wi1i2 has only a tangen-
tial component along the edge conneting node i1 and i2.

In order to construct high-order vector bases, the interpolatory points should be cho-
sen away from the tetrahedron vertices. As shown on the right of Fig. 1, the interpolatory
points only located on the edges, faces, and volume of the tetrahedron element. The com-
plete interpolatory polynomials are also associated with different edges as.

Ni1i2
ijkl =αi1i2

ijkl
(p+2)2

γβ
ξi3 ξi4 P̂p+2

i (ξ1)P̂p+2
j (ξ2)P̂p+2

k (ξ3)P̂p+2
l (ξ4), (7.6)

where i3 and i4 are two integers from (1,2,3,4) other than i1 and i2, and γ(β) is taken to be
i,j,k, or l for i3(i4)=1,2,3, or 4, respectively. P̂p+2

j (ξi) is same as Eq. (7.3). For normaliza-

tion, αi1i2
ijkl is same as αi1i2

ijk in Eq. (7.4) for the 2D case.
The total degree of freedom on the tetrahedron is (P+1)(P+3)(P+4)/2, where P is the

order of the bases. More detailed information can be found in [11, 12, 15].
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Appendix B: Hierachical Nédélec Vector Basis

Vector Basis on 2D Triangle Element

The zeroth-order vector bases function associated with the edge-connecting nodes i1 and
i2 is given by

H0(curl)= ξi1∇ξi2−ξi2∇ξi1 , (7.7)

where ξi are barycentric coordinates related to nodes i, i=1,2,3. H0(curl) has only a tan-
gential component along the edge-connecting node i1 and i2.

In order to construct Pth-order vector bases, Hp(curl), (P+1)th-order gradient type
vector bases ∇WP+1

s,e and ∇WP+1
s, f should be added first. Then the (P+1)th-order nongra-

dient type vector bases∇WP+1
tv,e,ng and∇WP+1

tv, f ,ng should be added to make the vector bases
complete to Pth-order,

Hp(curl)=Wp
tv,e,ng

⊕
∇Wp+1

s,e
⊕

Wp+1
tv, f ,ng

⊕
∇Wp+1

s, f , (7.8)

where Wp
tv,e,ng =W1

tv,e,ng = H0(curl). Wp+1
tv, f ,ng is the nongradient type vector bases associ-

ated with the face. ∇Wp+1
s,e and ∇Wp+1

s, f are gradients of corresponding potential bases

associated with edges Wp+1
s,e and face Wp+1

s, f . Their expressions are as follows

Wp+1
s,e = {ep+1

1,2 ,ep+1
1,3 ,ep+1

2,3 , (ep+1
m,n =λmλi

n|i=1,2,...,p)} (7.9)

Wp+1
s, f =

{
f p+1
1,2,3 ,

(
f p+1
1,2,3 =λ1λi

2λj i=1,2,...,p−1
j=1,2,...,p−i

)}
(7.10)

Wp+1
tv, f ,ng = {ep+1

2,3 ∇λ1,ep+1
1,3 ∇λ2, f p+1

1,2,3∇λ1} (7.11)

The total degree of freedom on a triangle is (P+1)(P+3), where P is the order of the
bases. This is the same as for the interpolatory vector bases.

Vector Basis on 3D Tetrahedron Element

The zeroth-order vector bases functions associated with the edge-connecting nodes i1 and
i2 is given by

H0(curl)= ξi1∇ξi2−ξi2∇ξi1 , (7.12)

where ξi are barycentric coordinates related to nodes i, i=1,2,3,4. H0(curl) has only a
tangential component along the edge-connecting nodes i1 and i2.

In order to construct Pth-order vector bases, Hp(curl), (P+1)th-order gradient type
vector bases∇WP+1

s,e ,∇WP+1
s, f , and∇WP+1

s,v should be added first. Then the (P+1)th-order
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nongradient-type vector bases∇WP+1
tv, f ,ng and∇WP+1

tv,v,ng should be added to make the vec-
tor bases complete to Pth-order.

Hp(curl)=Wp
tv,e,ng

⊕
∇Wp+1

s,e
⊕
∇Wp+1

s, f

⊕
∇Wp+1

s,v
⊕

Wp+1
tv, f ,ng

⊕
Wp+1

tv,v,ng, (7.13)

where Wp
tv,e,ng =W1

tv,e,ng = H0(curl). Wp+1
tv, f ,ng and Wp+1

tv,v,ng are the nongradient-type vector

bases associated with faces and volume. ∇Wp+1
s,e , ∇Wp+1

s, f , and ∇Wp+1
s,v are gradients of

corresponding potential bases associated with edges Wp+1
s,e , faceWp+1

s, f , volume Wp+1
s,e , and

face Wp+1
s,v . Their expressions are as follows.

Wp+1
s,e = {ep+1

1,2 ,ep+1
1,3 ,ep+1

2,3 , (ep+1
m,n =λmλi

n|i=1,2,...,p)} (7.14)

Wp+1
s, f =

{
f p+1
1,2,3 ,

(
f p+1
1,2,3 =λ1λi

2λ
j
3

i=1,2,...,p−1
j=1,2,...,p−i

)}
(7.15)

Wp+1
tv, f ,ng =

{
ep+1

l,n ∇λm,ep+1
n,m ∇λl , f p+1

l,m,n∇λl (l,m,n)=
{

(1,2,3),(1,3,4)
(1,2,4),(2,3,4)

} }
(7.16)

Wp+1
tv,v,ng =


f p+1
2,3,4∇λ1

f p+1
1,3,4∇λ2

f p+1
1,2,4∇λ3

vp+1
1,2,3,4∇λ1

vp+1
1,2,3,4∇λ2

, (7.17)

where f p+1
l,m,n and vp+1

1,2,3,4 are hierarchical potential bases that can be expressed as follows.

f p+1
l,m,n =

{
λlλ

i
mλ

j
n

i=1,2,.. .,p−2,
j=1,2,.. .,p−1−i

}
(7.18)

vp+1
1,2,3,4 =

 λ1λi
2λ

j
3λk

4

i=1,2,.. .,p−3,
j=1,2,.. .,p−2−i,
k=1,2,.. .,p−1−i− j

 (7.19)

The total degree of freedom on the tetrahedron is (P+1)(P+3)(P+4)/2, where P is the
order of the bases. This is also same as for the interpolatory vector bases. More informa-
tion can be found in [2, 35, 36, 39].
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